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Abstract: This paper presents a high pulse energy, narrow linewidth, mid-infrared (MIR) laser
at 6.45 µm, based on a BaGa4Se7 (BGSe) crystal optical parametric oscillator (OPO) pumped by
1.064 µm laser. The maximum pulse energy at 6.45 µm was up to 1.23 mJ, with a pulse width of
24.3 ns and repetition rate of 10 Hz, corresponding to an optical–optical conversion efficiency of
2.1%, from pump light 1.064 µm to idler light 6.45 µm. The idler light linewidth was about 6.8 nm.
Meanwhile, we accurately calculated the OPO phase-matching condition at BGSe crystal pumped
by 1.064 µm laser, and a numerical simulation system was performed to analyze the input–output
characteristics at 6.45 µm, as well as the effect of crystal length on the conversion efficiency. Good
agreement was found between measurement and simulation. To the best of our knowledge, this
is the highest pulse energy at 6.45 µm, with the narrowest linewidth for any all-solid-state MIR ns
laser in BGSe-OPO pumped by simple 1.064 µm oscillator. This simple and compact 6.45 µm OPO
system, with high pulse energy and narrow linewidth, can meet the requirements for tissue cutting
and improve tissue ablation accuracy.

Keywords: optical parametric oscillator (OPO); BaGa4Se7 crystal; 6.45 µm mid-infrared (MIR) laser

1. Introduction

Tissue ablation in human, for example, brains and eyes, requires the highest precision
in the target tissues, reducing collateral damage to surrounding tissues, as far as possible.
The viability of the remaining tissues is crucial to assess the effectiveness of ablation.
Particularity, the mid-infrared (MIR) laser at 6.45 µm has tremendous potential as a high-
precision surgical tool, as it offers minor collateral damage and a rapid ablation rate [1]. The
penetration depth by 6.45 µm laser amounts to several µm, which approximates the single
cell thickness and approaches the optimal value [2]. Especially, it is useful for ablation
in ocular, neural, and dermal tissues [3]. Therefore, the development of the MIR laser at
6.45 µm has become a perennial hot topic. Four ways are commonly used to obtain
6.45 µm laser, including free electron lasers (FELs), gas Raman lasers, strontium vapor
lasers, and solid-state lasers, based on nonlinear optical (NLO) frequency conversion
techniques [1,2,4,5]. However, the high cost and bulky structure of FELs limit their extensive
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application. Short operating life and tedious maintenance also hinder the development of
gas Raman and strontium vapor lasers. In view of the precise and compact requirements of
their application, solid-state lasers based on NLO frequency conversion techniques are an
attractive means to generate high-energy MIR waves, such as optical parametric generation
(OPG), the optical parametric amplifier (OPA), and the optical parametric oscillator (OPO).
Among these general methods, OPO based on MIR crystals with good nonlinear properties
and accessible pump lasers is a promising candidate for generating high-performance, long-
wave MIR sources. At present, a variety of promising NLO crystals, which can be pumped
by 1 µm laser to obtain a 6.45 µm laser, have been developed, including chalcogenides and
phosphorus compounds, such as AgGaSe2 (AGSe) [6], LiInS2 (LIS) [7], LiInSe2 (LISe) [8],
BaGa4S7 (BGS) [9], BaGa4Se7 (BGSe) [10,11], and CdSiP2 (CSP) [12].

Among these NLO crystals, BGSe [13,14], is a potential NLO crystal for generating MIR
radiation by parametric down-conversion. It is a new positive biaxial selenide compound
and belongs to the m monoclinic point group, space group Pc, with a = 7.6252(15) Å,
b = 6.5114(13) Å, c = 14.702(4) Å, β = 121.24◦, and Z = 2. Moreover, BGSe crystal can
operate under high pulse energy, owing to its excellent, intriguing characteristics. For
example, firstly, it has high NLO coefficients with the two major nonlinear tensor elements
of d16 = 31.5 and d23 =22.1 pm/V [15]. Secondly, we should note that BGSe crystal can be
processed in a large aperture via the Bridgman–Stockbarger method, which is favorable for
high pulse energy operation. Besides, it has an intrinsic wide bandgap of about 2.73 eV,
which can help to enhance the damage threshold (a surface laser damage threshold of
557 MW/cm2 at 1 µm with 1 Hz and 5 ns is about 3.7 times that of AgGaS2 [16]) and
avert the nonlinear absorption effect (two-photon absorption, TPA) of economical 1 µm
lasers [16,17]. Furthermore, theoretical modeling indicates that the chemical kinetics
happen on the nanosecond (ns) time scale, guiding us to research ns pulsed 6.45 µm MIR
lasers with high energy and narrow linewidths [2,18].

Several works on 6.45 µm ns MIR generation, from a 1 µm laser based on BGSe-OPO,
were reported [19,20]. For example, a ns BGSe-OPO pumped by Q-switched Nd:YLiF4 laser
at 1053 nm was reported. MIR idler wave tuning from 2.6 to 10.4 µm was demonstrated
with an angle-tuned, type-I (o→ e + e) phase-matching y-cut sample, but the output energy
at 6.45 µm was only about 13 µJ [19]. Moreover, widely tunable MIR radiation from 2.7 to
17 µm was demonstrated. Using a wide pump beam diameter (Φ = 5 mm) to accommodate
the available high-energy from a diode-pumped Nd:YAG master oscillator power amplifier
(MOPA) system (up to Ep = 250 mJ for 8 ns pulse at a repetition rate of 10 Hz), the maximum
pulse energy of ~1 mJ at 6.45 µm with the pulse width of ~10 ns was obtained, but it gave a
wide spectral FWHM of 9 nm at 7.2 µm [20]. Moreover, unfortunately, the MOPA pump
system was very complex, bulky, and expensive, which limits its applicability.

In this paper, we report a compact, high pulse energy, and narrow linewidth MIR laser
at 6.45 µm, from a BGSe-OPO system pumped by a 1.064 µm Nd:YAG oscillator. With an
input energy of 58 mJ and repetition rate of 10 Hz, an output pulse energy of 1.23 mJ at
6.45 µm, pulse duration of 24.3 ns, and spectral FWHM of 6.8 nm were obtained for the
first time, corresponding to an optical–optical conversion efficiency of ~2.1% from pump
beam to idler beam. As far as we know, this is the highest pulse energy at 6.45 µm, with
the narrowest linewidth for any all-solid-state MIR ns laser in BGSe-OPO pumped by a
1.064 µm oscillator. This laser has a simple design and compact structure, which is very
suitable for tissue cutting.

2. BGSe Crystal Phase-Matching Characteristics

For the BGSe crystal, the phase-matching characteristics can be calculated by the
following Sellmeier equations (S-E) [21]:

n2
x = 6.72431 +

0.26375
λ2 − 0.04248

+
602.97

λ2 − 749.87
(1)
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n2
y = 6.86603 +

0.26816
λ2 − 0.04259

+
682.97

λ2 − 781.78
(2)

n2
z = 7.16709 + 0.32681

λ2−0.06973 + 731.86
λ2−790.16

(0.901 ≤ λ ≤ 10.5910)
(3)

where λ is in micrometers. The phase-matching angles of BGSe-OPO pumped by
1.064 µm are shown in Figure 1a. It can be seen that the BGSe crystal can satisfy the
type-I and type-II phase-matching conditions in the x-z and y-z principal planes. In the
monoclinic class, m symmetry crystals, one of the principal dielectric axes (xyz), are al-
ways parallel with the b crystallographic axis. In our paper, for BGSe, it is x ≡ b, so the
corresponding expressions for the effective nonlinearity coefficients of BGSe read [20]:

de f f−I(x− z) = d16 cos2 θ + d23 sin2 θ (4)

de f f−I I(x− z) = −d24 sin θ (5)

in the x-z principal plane and

de f f−I(y− z) = ±d16 cos θ − d15 sin θ (6)

de f f−I I(y− z) ≈ 0 (7)

in the y-z principal plane, where the tensor components d15, d16, d23, and d24 can be found
in [15]. Moreover, we take all the (θ, ϕ) on the phase-matching curves to calculate the
deff, which are shown in Figure 1b. It was confirmed that the suitable phase-matching
directions of the BGSe crystals are located in x-z and y-z principal planes. In Figure 1b,
type-I phase-matched BGSe in the x-z principal plane and type-II phase-matched BGSe in
y-z principal plane have approximative deff, but there was a wider accept angle and accept
bandwidth in the x-z principal plane. Therefore, in our experiment, BGSe crystal was cut at
θ = 47.1◦ and ϕ = 0◦, whose deff is about twice that of AGS crystal (~15.8 pm/V).
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Figure 1. Calculated phase-matching characteristics of BGSe-OPO pumped by 1.064 µm laser.
(a) Phase-matching angles versus OPO signal and idler wavelength at the x-z principal plane and
y-z principal plane of BGSe crystal. (b) The OPO effective nonlinear optical coefficients deff versus
phase-matching angles at the x-z and y-z principal planes.

3. Experimental Setup

The experimental configuration is shown in Figure 2. A linear cavity was adopted for
BGSe-OPO. The pump source was an electro-optical (EO) Q-switched Nd:YAG oscillator at
1.064 µm at 10 Hz (LPS-1064-S-200 mJ). The maximum pulse energy was 200 mJ, with a
pulse duration of 10 ns. Firstly, an optical isolator (ISO) was employed to avoid possible



Appl. Sci. 2022, 12, 6689 4 of 9

damage to the pump source, as caused by the reflected pump light. Then, the incident light
was reshaped and collimated by a telescope system (TS) to a Gaussian beam with a spot
diameter of 2 mm. Next, an attenuator, which consisted of a half wave plate (HWP) and
45◦ polarized beam splitter (PBS) at 1064 nm, was utilized to adjust the incident energy at
vertical polarization, without altering the pulse duration and pump beam profile. A large
aperture 6 × 6 × 18 mm3 BGSe crystal was grown by the Bridgman-Stockbarger method.
Both end facets of BGSe crystal were finely polished and coated with high transmittance
(HT) via 1.064, 1.274, and 6.45 µm lasers. The transmission spectrum of the uncoated
BGSe sample, in the range of 0.2~20 µm, is shown in the inset of Figure 2. It has better
transmission in the range of 1~12 µm and can transmit up to 18 µm. The OPO cavity was
constructed of two parallel-plane mirrors, i.e., M1 and M2, and the coating parameters
were as follows: M1: 1.064 µm HT, 1.274 and 6.45 µm high reflectivity (HR); M2: 1.064 and
1.274 µm HR, 6.45 µm, with partial transmittance of 40%. The physical length of the cavity
was about 25 mm. A germanium (Ge) wafer with a transmittance of 42% at 6.45 µm was
placed behind the output coupling (OC) mirror, M2, in order to block the residual pump
and signal waves. An energy meter was placed behind the Ge wafer to detect the energy of
the idler laser.
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equations to adjust the parameters of OPO. By supposing a pump beam with good Gauss-
ian distribution in space and time and considering the effect of absorption and spatial 
birefringent walk-off in BGSe crystal, the relationship between the idler energy at 6.45 μm 
and input pump energy was simulated by the SNLO software, as well as plotted in Figure 
3 with a black dashed curve. In the model, with the increase of the pump energy, there 
was no saturation phenomenon for the idler wave output energy. 

Figure 2. Schematic of the experimental setup. ISO: optical isolator; TS: telescope system; HWP:
half-wave-plate at 1.064 µm; PBS: 45◦ polarized beam splitter at 1.064 µm; M1: input coupler (plane
mirror); M2: output coupler (plane mirror); Ge: germanium filter mirror. Inset: transmission spectrum
of uncoated BGSe sample in 0.2~20 µm range.

4. Results and Discussion

Firstly, a theoretical simulation model was established based on three-wave mixing
equations to adjust the parameters of OPO. By supposing a pump beam with good Gaus-
sian distribution in space and time and considering the effect of absorption and spatial
birefringent walk-off in BGSe crystal, the relationship between the idler energy at 6.45 µm
and input pump energy was simulated by the SNLO software, as well as plotted in Figure 3
with a black dashed curve. In the model, with the increase of the pump energy, there was
no saturation phenomenon for the idler wave output energy.
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With the above parameters, the experimental input-output characteristic is shown,
as plotted in Figure 3 red solid circles (measured by an energy meter of OPHIR, PE10-C,
metallic probe, with the maximum range of 10 mJ covering the wavelength range from
0.15 to 12 µm). The oscillator exhibits pump threshold energy as low as 10 mJ, which
corresponds to the energy fluence of 0.318 J/cm2. Then, the output pulse energy increases
monotonically when the injected pump energy is below ~58 mJ; then, a rollover can be
noticed, while the input pump energy exceeds ~58 mJ. A maximum pulse energy was up
to 1.23 mJ at 6.45 µm under the pump energy of 58 mJ, corresponding to a peak power
density of 60.7 MW/cm2. The optical-optical conversion efficiency is 2.1%, from 1.064 to
6.45 µm. The pump pulse energy could not be improved further, as it was limited by the
damage threshold of AR coating at BGSe crystal end facts (~80 MW/cm2). It is observed in
Figure 3 that the simulated results are in close agreement with the experimental data when
the injected pump energy is below ~30 mJ. At higher pump energy, the experimental data
are a little less than the numerical results, which may be attributed to ignoring the effect of
the thermally-induced diffraction caused by BGSe crystal absorption in the simulation.

Similarly, the OPO optical-optical conversion efficiency, from 1.064 to 6.45 µm, versus
BGSe crystal length at the fixed pump pulse energy of 58 mJ was calculated, as presented
in Figure 4 (red curve). It can be seen in Figure 4 that the conversion efficiency increases
with increasing BGSe crystal length to be ~9% around with a 22 mm long crystal. Then, the
conversion efficiency falls off after a crystal longer than 22 mm, due to back conversion.
The BGSe crystal we used was the only available crystal with a length of 18 mm. The
experimental datum is also shown in the Figure 4. It is in close agreement with the
simulated OPO conversion efficiency of 2.6%, which is similar to the conversion efficiency
of ~3.3% in Ref. [20]. To confirm further the correctness of the simulation of optical-optical
conversion efficiency, as a function of crystal length, the other experimental datum at the
BGSe crystal length of 16.5 mm was added to Figure 4. The experimental optical-optical
conversion efficiency is about 1%, close to the simulated value of 1.15%. Therefore, we
think the simulation of optical-optical conversion efficiency, as a function of the crystal
length, is credible. Although spatial birefringent walk-off in BGSe crystal was considered
in simulation, the walk-off length was about 69 mm, assuming three waves with the same
spot radii of 1 mm, which was much longer than the length of the crystal (18 mm) in our
experiment. Therefore, the walk-off effect weakly influenced the conversion efficiency. In
the following work, we enabled scale-up for the single pulse energy or conversion efficiency
at 6.45 µm by choosing an optimum crystal length of about 22 mm, based on improving
our crystal growth technique or optimizing the OC transmittance and thermal distribution
in a shorter length BGSe crystal.
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Figure 4. Simulated optical-optical conversion efficiency from 1.064 to 6.45 µm versus crystal length
at mixed pump pulse energy of 58 mJ. The black dots represent the experimental data at the BGSe
crystal lengths of 16.5 and 18 mm, respectively.

The pulse temporal profiles of pump and idler beams were measured via InGaAs
(DET10A/M, THORLABS, rise time < 1 ns, 200~1100 nm) and HgCdTe (PDAVJ10, THOR-
LABS, 2.0~10.6 µm, bandwidth 100 MHz) photo-detectors, respectively, which were si-
multaneously connected with 2 GHz bandwidth digital oscilloscopes (Tektronix, MSO
5204B, Beaverton, OR, USA). The measured typical oscilloscope traces are displayed in
the Figure 5, under the input pulse energy of 58 mJ, suggesting the pump and idler pulse
durations of 30.4 and 24.3 ns, respectively. The idler FWHM pulse duration was shorter
than the incident pump pulse duration because of the temporal gain narrowing effect [22].
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Figure 5. Measured temporal profiles of the incident pump and idler lasers.

The typical spectrum characterization of the pump wave was measured by opti-
cal spectrum analyzer (Ocean Optics, Dunedin, FL, USA, HR4000, resolution 0.02 nm,
200 nm~1100 nm). The measurement result is shown in the upper inset of Figure 6. The
pump central wavelength is located at 1064.1 nm, with a spectral width of ~0.8 nm. More-
over, according to the OPO momentum conservation condition (1/λp = 1/λs +1/λi) and
phase-matching angle (θ = 47.1◦ and ϕ = 0) of BGSe, in this case, the signal wavelength λs
and idler wavelength λi were calculated to be 1.274 and 6.45 µm, respectively. The linewidth
of signal and idler light may be generated with a wide band of pump light and divergence
angle of pump beam. In our experiment, the pump beam is collimated in BGSe crystal,
so we focus on the effect of the pump beam linewidth on idler beam linewidth. When
three waves are collinear in BGSe crystal, according to the conservation of momentum and
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energy at type-I phase-matching, the coupling equations of the signal, idler, and pump
lights can be written by:

ωpno
p = ωsne

s + ωine
i (8)

∆ωp = ∆ωs + ∆ωi (9)

where nj is the refractive index of the nonlinear crystal at angular frequency, ωj for the
pump, signal, or idler waves (j = p, s, i), and ∆ωj (j = p, s, i) represents the spectral FWHM
of the pump, signal, and idler beams, respectively. The above two equations are combined,
and the higher-order terms are ignored, so the idler linewidth is generated by the pump
linewidth, as follows [23]:

∆λi =

(
ne f f .p − ne f f .s

ne f f .i − ne f f .s

)
×

λ2
i

λ2
p
× ∆λp (10)

where neff.j (j = p, s, i) can be written as follows:

ne f f .j = nj +
∂nj

∂ωj
ωj (11)
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(a) Simulation of signal and idler laser wavelength and linewidth. The inset at the top: the measured
pump spectrum at 1064 nm. (b) Measured spectrum of output idler beam.

Further, assuming the pump, idler, and signal beams with a Gaussian spectral pro-
file, the corresponding linewidths at 1.274 and 6.45 µm were estimated according to
Equations (10) and (11) and shown in Figure 6a. It can be seen that the linewidth at
6.45 µm is about 4.7 nm. In addition, the exact emitted idler wavelength was monitored by
a spectrometer (Arcoptix FT-IR 2-12, 0.4/cm, 2–12 µm, Arcoptix, Neuchatel, Switzerland).
The typical result of an idler beam at 6451.6 nm is plotted in Figure 6b, with a corresponding
spectral FWHM of ~6.8 nm, which is less than that in Ref. [20].

5. Conclusions

In conclusion, we have demonstrated a compact, high pulse energy, and narrow
linewidth 6.45 µm laser, based on BGSe-OPO and pumped by a 1064 nm oscillator. A
maximum output pulse energy of 1.23 mJ, with the linewidth of 6.8 nm was obtained,
which is the highest energy with narrow linewidth at 6.45 µm, to the best of our knowledge.
The pulse duration was measured to be about ~24.3 ns. Meanwhile, the output idler energy
versus input pump energy and optical-optical conversion efficiency versus the BGSe length
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were simulated. The calculated results were in close agreement with the experimental data.
This 6.45 µm OPO system is precise and appropriate in applications. Such a high pulse
energy can meet the tissue cutting threshold requirements (~1 mJ) [2]. In addition, pulses
with narrow bandwidth are profitable for improving tissue ablation accuracy.
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